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Generalized spectral tests for serial dependence
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Summary. Two tests for serial dependence are proposed using a generalized spectral theory in
combination with the empirical distribution function. The tests are generalizations of the Cramér—von
Mises and Kolmogorov—Smirnov tests based on the standardized spectral distribution function.
They do not involve the choice of a lag order, and they are consistent against all types of pairwise
serial dependence, including those with zero autocorrelation. They also require no moment
condition and are distribution free under serial independence. A simulation study compares the finite
sample performances of the new tests and some closely related tests. The asymptotic distribution
theory works well in finite samples. The generalized Cramér—von Mises test has good power against
a variety of dependent alternatives and dominates the generalized Kolmogorov—Smirnov test. A
local power analysis explains some important stylized facts on the power of the tests based on the
empirical distribution function.
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1. Introduction

Let {X, € R};2__, beastationary process with marginal distribution function G(x) := P(X, < x)

and pairwise distribution function Fj(x, y) := P(X, < x, X,_; < ), where (x, y) € R? and

j=0, +1,.... Suppose that we have a random sample {X,},_, of size n, and we are interested

in testing the null hypothesis H, that {X,} is independently and identically distributed (IID).
The dependence of {X,} often is characterized by the standardized spectral density

h(w) == 2m)"! j_'f () exp(—ijw), wel-mal, i=+—1, (1.1

where p(j) := corr(X,, X,_;), or by the standardized spectral distribution function

sm( ]7r)\)

AT
H\) =2 L h(w) dw = A+2Z p(J)——— elo, 1]. (1.2)

Under hypothesis H,, H()\) becomes Hy(\) := A. To test H,, Anderson (1993) compared
Hy()\) with
n-l sin( jm
H(/\)_A+2Z () TSV (] ) (1.3)
j_
where p(j) is the sample autocorrelation function, via the Cramér—von Mises criterion
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n 1 N n=1 52(;
Tey =2 [ (A0 — H(\)Pdr=n> 2 _(12) (1.4)
2 Jo =1 (jm)
and the Kolmogorov—Smirnov criterion
1/2 n—1 V2 sin(jmA
n sin(jmA)
Ts == (5) sup [H(\) — Hy(\)| = sup |n'/? LA (1.5)
A€[0,1] Ae[0,1]

The tests using Ty and Tkg are consistent against all types of autocorrelation, but they have
no power against alternatives with zero autocorrelation. Examples include autoregressive
conditional heteroscedastic (ARCH), bilinear, non-linear moving average, threshold auto-
regressive processes and iterative logistic maps (see Hall and Wolff (1995)). Moreover, E(X?)
< oo is required for Ty and Txg. This rules out time series with infinite variance, as is often
observed in high frequency economic and financial data (e.g. Mandelbrot (1967)).

To test generic serial dependence and to avoid the moment condition, we shall generalize
Anderson’s (1993) approach via the dependence measure

>«"(x, y) = Fi(x, y) — G(x) G(y), (x,y)eR* j=0, £1,.... (1.6)

Because p; *(x, y) = 0 V(x, y) € R? if and only if X, and X,_; are independent, pf(x, y) can
capture all types of pairwise dependence, including those w1th zero autocorrelation.

The idea of using measure (1.6) to test independence dates back to Hoeffding (1948), who
used an analogue of it to test independence between two IID random variables. Blum et al.
(1961) used the empirical distribution function (EDF) to test independence between the
components of an IID random vector via the Cramér—von Mises and Kolmogorov—Smirnov
criteria. See also Deheuvels (1981) and Carlstein (1988).

Testing for hypothesis H, via measure (1.6) is more complicated because the lag order j is
involved. Skaug and Tjestheim (1993a) were the first to test pairwise serial dependence up to
order p by using measure (1.6). Hong (1998) proposed a complementary test. Delgado (1996)
extended the Cramér—von Mises test of Blum ez al. (1961) to detect joint dependence of
{X,, ..., X,_,}. There are other time domain tests for serial dependence (e.g. Brock ez al. (1996),
Chan and Tran (1992), Hjellvik and Tjestheim (1996), Pinkse (1998), Robinson (1991), Scargle
(1981), Skaug and Tjestheim (1993b, 1996) and Wolff (1994)). See Tjostheim (1996) for an
excellent survey.

Almost all the existing tests deal with serial dependence of a finite order. This is
unsatisfactory from a theoretical point of view, because the actual dependence may be of a
higher order. In practice, as Skaug and Tjestheim (1993a, 1996) observed, the power of these
tests heavily depends on the chosen lag order. Often, maximal power is achieved by using the
correct lag order of the alternative. However, prior information on the dependence structure
is usually not available. For such alternatives as fractionally integrated processes, it is difficult
to choose a lag order to maximize power even if we knew the alternative. Practitioners often
have to try several lags. It is quite common that some lags give significant statistics whereas
others do not. Thus, it is delicate to reach a decisive conclusion.

The key idea of this paper is to synthesize the approaches of Anderson (1993) and Skaug
and Tjostheim (1993a). The new tests do not involve the choice of a lag order and are
consistent against all types of pairwise dependence. They require no moment condition and
have accurate sizes in finite samples. It should be emphasized, however, that the technical
convenience of the lag independence does not necessarily give the best power. Indeed, the new
tests should be viewed as not competing but as a complement to such tests as those of Skaug
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and Tjestheim (1993a) and Hong (1998). In subsequent sections, we introduce the approach
and test statistics, establish the asymptotic distribution and power theory, and compare the
tests with some closely related tests in finite samples. Mathematical proofs are available from
the author. Throughout the paper, all convergences are taken as n — oo.

2. A generalized spectral approach

Because pf(x, y) = 0 ¥(x, y) € R* implies p*(x, y) = 0 V(x, ») € R*, and vice versa, to test
hypothesis H, it suffices to check whether p}(x, y) = 0 for all j > 0. We thus base our tests on

pi(x, ¥) == pli(x, »), j=0, £1,.... (2.1)

This greatly simplifies the analysis. Observing that p,(x, y) is the covariance between
1(X, < x) and 1(X,_; < »), where 1(-) is the indicator function, we consider its Fourier
transform

11

hw, x, y) == Qm)~" i pi(x, y) exp(—ijw), w € [—m, 7]. 2.2)

Jj=—00

This exists if

sup { i [ p(x, y)l} < 00,

()cA,y)ER2 J=—00

which holds under a proper mixing condition. It is a generalization of the standardized
spectral density /(w) in expression (1.1). Similarly,

H\, x,p) =2 JM &;ﬂ/\), A€o, 1], (2.3)

hw, x, ) dw = py(x, Y)A+2 Z; p;(x, y)
0 Jj=

is a generalization of the standardized spectral distribution function H()) in expression (1.2).
The functions (2.1)—(2.3) can capture all types of pairwise dependence and require no
moment condition, which are not attainable by p(j), i(w) or H(A). They also differ from
higher order spectra (Brillinger and Rosenblatt, 1967a, b; Subba Rao and Gabr, 1984), which
can characterize many types of non-linearity but may still miss some important ones. The
bispectrum, for example, easily misses ARCH processes with zero third-order cumulants.
Moreover, higher order moment conditions are required for higher order spectra.

The spectral approach provides a natural tool to test hypothesis H,. Under H,, H(A, x, »)
becomes

HO(A’ X, y) = pO(x’ y))\ (24)
This is analogous to the flat spectrum Hy(A) = A. Define the empirical measure
ﬁj(x’ y) = F}(Xa y) - FA}(xa OO) FA}(OO’ y)) J = 1’ R 1’ (25)

where

n

Fe,y)=0-p~" 3 10X, < 01X, ;<)

t=j+1

is an unbiased EDF of (X,, X,_;). Two plausible estimators for H(A, x, y) and Hy(A, x, y) are
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sin( jw\) (2.6)

1 .\ 1/2
H(A: X, J’) = ﬁo(xa y))‘+2z% (1_‘£> ﬁj(xa y)
J=

Ay(\, x, y) = po(x, pIA. 2.7)

In expression (2.6), p;(x, y) is naturally weighted down for higher order lags. The factor
a- j/n)l/ ? is a small sample correction, further discounting higher order lags.
Put G(x) :=n"' £, 1(X, < x). To test for hypothesis H,, we can use the L,-norm

n N N A A =1 (n =) 6*(j
Toow = | [ A0 x ) - B0 v a6 a6y an = 5 DG oy
2 0 JR2 j=1 (]W)
where
U= | )46 d60) =7 3535 3K X
R =1 s=
Note that 6%(j) differs from the empirical Hoeffding (1948) dependence measure
&) = J pi(x, y)dE(x, y) = (n—j)"" Z] pi(Xes X)), (2.9)
R? 1=j+

which is used in Skaug and Tjestheim (1993a) and Hong (1998). Both 6°(j) and &°(})
converge to 0 under hypothesis H, but generally to different limits under the alternative.
Another test statistic is the supremum norm

1/2
n N .
Toks = <§> sup sup |H(A, x, y) — Hy(A, x, p)|

(x.y)eR? A€[0.1]

ni:l(n_]')‘/zﬁ.(,\/ X)M
y i\ Ay, Ay . .

=1 JT

= max Ssup
1<ts<n Ael0,1]

(2.10)

The statistics T and Tk are generalizations of Ty and Tgg in expressions (1.4) and
(1.5). Because Ty 1s invariant under any order preserving transformation, and Tggg is
invariant under any continuous monotonic transformation, they are distribution free under
hypothesis H. This is appealing because X, and X,_; are independent if and only if g(X,) and
g(X,_;) are independent for any continuous monotonic function g: R — R (e.g. Skaug and
Tjestheim (1996)). The test statistics of Skaug and Tjestheim (1993a), Delgado (1996) and
Hong (1998) are distribution free under H,, as well. Note that the distribution-free property
holds only when X, is a continuous variable (see Skaug and Tjestheim (1993a)).

3. Asymptotic null distribution

In this section, we first establish a functional central limit theorem for a multiparameter
empirical process. The null limit distributions of the new tests are then derived as the limit
distributions of some continuous functionals of the multiparameter empirical process.

Assumption 1. {X,} is a stationary process with continuous marginal distribution G(-).

Put U, := G(X,), which follows a uniform marginal distribution on [0, 1], and put v :=
(\, u, v) € 1:=[0, 17, with metric 0(y,, 73) = |\, — Aol + |u; — us| + |v; — vy]. Define
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YU A ! J 12, sin(jw\)

A9 = Y, oA 425 (1 ——) P, ST 1)
j=1 n s

H§ () == pg (u, 0)A, (3.2)

where p/(u, v) := Fb(u v) — F{(u, 1) £/ (1, v) and £ (u, v) is the EDF of (U,, U,_;), defined
in the same way as F (x y). Given assumption 1, the inverse function G~ of G(-) exists and
P Y(u, v) = pAG™ '), G '(v)}, whence, with Gb(u) =n"' T, 1(U, < u), we have

Toem = (n/2) L {A%(7) — B5 (7)) dGY(w) dGY(v) d, (3.3)
Toxs = (n/2)"? sup |AY(y) — Hi (). (3.4)
e

We shall first show that, under hypothesis Hy, (r/ )" A Y(y) — AY(7)} can be approximated
by

Ym):—Z(n )V, ) V2SO (3.5)

=1 T
where
Fi(u, v) == (n = )" Z {1V, < w) —u}{1(U,; < v) — v}
t=j+1
Lemma 1. Under assumption 1 and hypothesis H,

sup
el

12
(3) 1= Ao - .00 o

Lemma 1 and equations (3.3) and (3.4) imply
Toom — j Y2(7) dGY(u) dGY(v) dA > 0, (3.6)
1

p
Toks — sug) 1Y,(m)] — 0. (3.7)
VE
Thus, we can focus on the multiparameter stochastic process Y, (7). Let D(I) denote the space
of real-valued functions on I that are right continuous with left-hand limits existing at each
point of I. We equip D(I) with the Skorohod metric. Then Y, (v) is a random element in D().
Let Z(v) be a Gaussian process with mean 0 and covariance kernel

E{Z) ZA) i=wAu' —uuYoAv' — o0 )AAN = AN), (3.8)

where u A v := min(u, v). We may call Z(v) a three-parameter separable Brownian bridge on
I. By showing that the finite dimensional distribution of Y, () converges to that of Z(y) and
that Y, (7) is stochastically equicontinuous on the metric space (I, 8), we obtain the functional
central limit theorem for Y,(), one of the key results in this paper.

Theorem 1. Under assumption 1 and hypothesis Hj,, Y,(y) converges weakly to Z(-y) on D(I).

This can be used to construct many tests for serial dependence using various continuous
divergence measures, the L,-norm and the supremum norm being just two examples.
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To obtain the limit distribution of Tgcy, We show that replacing the empirical measure
GY(-) in equation (3.6) by its theoretical counterpart does not affect the limit distribution of

TGCM .

Theorem 2. Under assumption 1 and hypothesis Hj,
J Y2(7) dGY(u) dGY(v) dX — J Y2(y)dy = 0.
I I

This, along with theorem 1, equations (3.6) and (3.7) and the continuous mapping theorem
(see Pollard (1990)), yields the limit distributions of the tests proposed.

Theorem 3. Under assumption 1 and hypothesis H,,
d 2
Toem — Z () dy
1
and
d
Tgks — sup |Z(9).
el

To study these limit distributions, let A; > 0 be an eigenvalue and ;: [0, 1] — R the corres-
ponding normalized eigenfunction of the integral equation

1
v = [ atw v
0
for some positive definite function ¢: [0, 1]* — R. We can express
q(u, v) = Zl A () (o),
J=

where the series converges absolutely and uniformly on [0, 1]*. For ¢(u, v) = u A v — uv, we
have )\, = (jm)~* and Pi(u) = /2 sin( jru), as is well known. It follows that

EZ(y)Z(y) = i i i V2 si.n(jmt) V2 sin(kmv) +/2 sin(/mA) /2 sir.l( Jmu')

k=11 jm km I Jr
V2 sin(kmo') v/2 sin(ir\)
X .
km I

Because Z(v) is Gaussian with mean 0, it has the Karhunen—Loéve representation

V2 sin(jmu) /2 sin(kmv) +/2 sin(/w))
j=1 k=1 1=1 Jm ke I jkl>

where the Z, are independent N(0, 1) variables. Thus, the limit distribution of Tgcy

o0 00 00 1 1 1
Z}(y)dy = 7k (3.9)
L EEE G Gy G
This is the same as the so-called Duque statistic, which arises in a different, multivariate, context
(see Deheuvels (1981), page 110). In fact, equation (3.9) is not entirely unexpected in view of the
earlier results in the present context (see Skaug and Tjestheim (1993a), theorem 2).
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The characteristic function of the limit random variable in equation (3.9) is

N oo o0 2ir e
T) = T l—-———5—— .
#(7) E{ L2 X G o) Gy ”"} HQH{ (ﬁr)z(kw)z(l?r)z}

Its quantiles can be tabulated by numerical inversion of ¢(7), but an accurate tabulation
seems difficult. Alternatively, we can simulate a truncated series

N N 1 1 5
;/ZI = G m ey (.10

with a large N. Similarly, we can simulate the quantiles of sup.; [Z(7)| using

up EN: ZN: N /2 sin(jru) /2 sin(kmv) /2 sm(hr)\)

el | =1 izt iz jm km In

Zi|- (3.11)

In practice, the distribution-free property ensures that the exact null distributions of Tsem
and Tgks for any n can be obtained by directly simulating the statistics Ty and Tgis.

Hong (1999) considered an analogous generalized spectral approach based on the
empirical characteristic function. There the limit distribution of the test statistic depends on
the unknown distribution generating the data and thus cannot be tabulated. The method of
analysis differs as well, because the indicator function is discontinuous whereas the complex-
valued exponential function is analytic.

4. Asymptotic power
To state the consistency theorem, we impose the following condition.
Assumption 2.

(a) {X,}is a stationary mixing process with strong mixing coefficient a(j) < C;j ™" for some
v > 1, where C € (0, oo) does not depend on j;

(b) the JOll’lt distribution of {U,, U,_;} has a continuous joint density bounded by C on
[0, 17°.

We first state the uniform convergence of HY(v) and AY (7).

Lemma 2. Under assumptlons 1 and 2, sup, |AY(v) — HY(y)| =" 0 and SUp, A () —
HY(7)| =P 0, where HY(y) and H{(y) are defined in the same way as H()\, x, y) and
Hy(A, x, y) in equations (2.3) and (2.4), with U, replacing X,.

This ensures the consistency of Tcm and Tggg against all types of pairwise dependence.

Theorem 4. Under assumptions 1 and 2,
@/nToen > [ 1H'0) = HEO)P &y
and
@/m)'Taxs = sup |H () = H{ ().

Recall that H"(y) = H{'(y) if and only if X, and X,_; are independent for all j > 0. When
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{X,} is not pairwise independent, Pr(Tgcy > C,) — 1 for any {C, = o(n)} and Pr(7Tggs >
C,) — 1 for any {C, = o(n'/*)}. Thus Tgey and Tggs are consistent against all types of
pairwise serial dependence. Most existing nonparametric tests do not have this property
because they deal with serial dependence of a finite order. Of course, the consistency against
all types of pairwise dependence is an asymptotic notion. Given any n, only n — 1 lags can be
checked. Also, Tgeym and Tggs cannot detect alternatives that are pairwise independent,
although practical examples of such alternatives may not exist.

To gain additional insight, we consider a class of local alternatives for which the
conditional density of X, given F,_;, the o-field consisting of X, s < ¢, exists and is

H,: g (X |1F—1) = g(X){1 + n_l/zf(er Xi—a) + r(Xp, Xi—o)h (4.1)
where g(-) ;= G'(-) is the marginal density of X, and d is an arbitrary but fixed lag order.

Assumption 3.

@) =, f(x,2)dG(z) = [*, f(z, »)dG(z) =0 V(x, p) € R* and [, [f(x, »)I’ dG(x) dG(y)
< 005

(d) 7 r(x, 2)dG(z) = [* r,(z, »)dG(z) =0 Y(x,y) € R* and Vn >0, and J2 17 Cx,
WEAG() dG(y) = o(n™ ") for k = 2, 3;

(© 1+n"2f(x, y)+r,(x, ) =0 V¥(x, y) € R* and Vn > 0.
Recalling that G™'(-) is the inverse function of G(-), we define

_ V2 sin(dn)) J J

G (@), G (D)} dit db. 4.2)
dm

)

0 Jo

Theorem 5. Under assumption 3 and hypothesis H,,,

d
Toem — j 1Z(y) + p(y))* dy
I
and
d
Toks — sug) [Z(7) + ()l
YE

Thus, Tgem and Tk have non-trivial power under hypothesis H,,, which allows for any
fixed but arbitrary lag order d and converges to H, at the parametric rate n~"/>. Theorem 5 is
useful in explaining some important stylized facts observed in the simulation below. We
expect that the tests of Skaug and Tjestheim (1993a) and Delgado (1996) also have power
under H, if the lag order used is larger than or equal to d.

5. Finite sample performance

5.1. Size

To assess the adequacy of the asymptotic theory in finite samples, we first generate 10000
realizations of {X,}/_, from the uniform distribution on [0, 1] for » = 10, 20, 30, 40, 50,
60, 80, 100, using the GAUSS Windows NT/95 version 3.2.37 random number generator
RNDUS ( ). We obtain 10000 statistics for Tgem and Tggs, Where Tggg is evaluated as
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max, oI Zﬂ(n PP i, xS0

1<ts<n 0<I<100 Jm

Table 1 gives the resulting empirical critical values. The results show rather rapid convergence
of the empirical critical values as n increases. At each level, the variations in the critical values
across different sample sizes are within 2.0% for Tgeoy after n > 50, and within 2.8% for
Tsks after n = 50.

We now use the asymptotic theory and bootstrap to compare the sizes of T;oy and Tis
with those of Anderson (1993), Skaug and Tjestheim (1993a), Delgado (1996) and Hong
(1998). We evaluate Anderson’s (1993) Tks as

max |n'/? zdz )

sin(jrl/ 100)
0</<100 jm
Skaug and Tjestheim’s (1993a) statistic Tgry(,) = (n— 1) E ", 6%(j), where 6%(j) is as in
expression (2.9). We include Tgry,) = 2 L (n—)) &), Wthh is found in Hong (1998) to
have better sizes. Under hypothesis H, TSTI([,) and Tgry, converge in distribution to

18
Mg

(m) =2~ XGi(p),

17

.
I
I

where the X‘f,(p) are independent X;-variables. We generate 10000 realizations of
w20
> 2. (m)Um) ™ xu(p)

j=1I=1

to obtain the asymptotic critical values.
With m := n — p, Delgado’s (1996) statistic is computed as

Table 1. Upper-tailed critical values of Tecm and Taks

n Critical values for the following percentage points:
20% 10% 7.5% 5% 2.5% 1%
Toem

10 0.005233 0.006116 0.006494 0.007114 0.008090 0.009635
20 0.005456 0.006556 0.006928 0.007523 0.008541 0.010402
30 0.005484 0.006550 0.007029 0.007706 0.008650 0.010279
40 0.005543 0.006598 0.007006 0.007675 0.008679 0.010182
50 0.005558 0.006548 0.007012 0.007629 0.008623 0.010606
60 0.005542 0.006605 0.007064 0.007763 0.008797 0.010501
80 0.005556 0.006583 0.007044 0.007717 0.008755 0.010698
100 0.005539 0.006616 0.007080 0.007785 0.008697 0.010723

Toks

10 0.3300 0.3604 0.3629 0.3847 0.4032 0.4633
20 0.3708 0.4040 0.4168 0.4373 0.4659 0.4973
30 0.3851 0.4176 0.4310 0.4481 0.4774 0.5110
40 0.3951 0.4252 0.4374 0.4546 0.4786 0.5105
50 0.3975 0.4303 0.4414 0.4569 0.4826 0.5210
60 0.4022 0.4329 0.4446 0.4587 0.4823 0.5151
80 0.4076 0.4393 0.4516 0.4666 0.4932 0.5232

100 0.4088 0.4385 0.4515 0.4662 0.4921 0.5199
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P P
(c) (d)

Fig. 1. Sizes by using asymptotics and the bootstrap (GCM, GKS, CM, KS, D(p), M(p), ST1(p) and ST2(p)
denote the test statistics Tgom, Taks: Tom Tks: Top)y Tmpy Tsti(p) @nd Tsrop respectively): (a) nominal level
10%, sample size n = 40; (b) nominal level 10%, sample size n = 100; (c) nominal level 5%, sample size n = 40;
(d) nominal level 5%, sample size n = 100; (e) bootstrap level 10%, sample size n = 40; (f) bootstrap level 10%,
sample size n = 100; (g) bootstrap level 5%, sample size n = 40; (h) bootstrap level 5%, sample size n = 100
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Fig. 1 (continued)



568 Y. Hong

m n p P n 2
TD(p) =m Zl m_l Z H l(Xt—j < Xs‘—f) - H {n,l_l Z I(Xf—j < X&'—j)}:| .
1=

s=p+1j=0 Jj=0 s=p+1

Its limit distribution is non-standard (see Delgado (1996)). We approximate its asymptotic
critical values using 10000 realizations of the IID uniform random sample {X,},27.

Finally, Hong’s (1998) asymptotically N(0, 1) test statistic is given by

n—1
> K/ —j)5°(j) —367")
TM(p) = 90 Zl

bl

n—2 1/2
{z > k4<j/p>}

with the Daniell kernel k(z) = sin(nz)/7z, which is optimal over a class of kernels.

The statistics Tsty(,), Tsta(p)s Ty and Ty, involve the choice of lag order p. We consider
p in the range 1—10 for each n. We study the size at the 10%, 5% and 1% levels, using 5000
realizations of an IID N(0, 1) sample {X,}._,, with n = 20, 40, 60, 100. To save space, Fig. 1
only reports the size at the 10% and 5% levels for n = 40 and n = 100. Because Tgem» Tokss
Tem and Tyg do not depend on p, their horizontal lines do not mean that their sizes are a
function of p. We first consider the size using the asymptotic theory (see Figs 1(a)-1(d)). The
asymptotic critical values of Ty are obtained from 10000 realizations of expression (3.10)
with truncation order N = 100. We do not include Tskg here, owing to the prohibitive
tremendous time cost in obtaining its asymptotic critical values given my current computer
resource. (However, we shall examine its size by using the bootstrap.) Of the seven tests, Tgem
has the best sizes. Tsry(,), Tsta,) and T, also have accurate sizes for very small p. Given n,
Ts11(p) and Ty, show some overrejections as p increases. T, strongly overrejects, apparently
because of the ‘curse of dimensionality’ caused by the joint dependence approach. Ty, has
some overrejection. The overrejections of Tsry(,), Tsta(y)» I and Ty, become weaker as n
increases. The tests Ty and Txg underreject, with Ty better than Tyg.

A bootstrap procedure is ideally suited to test hypothesis H, and can be used as a remedy
for an inadequate asymptotic approximation (see Skaug and Tjestheim (1993b, 1996)).
Figs 1(e)-1(h) report the bootstrap size using a procedure originally used in Hjellvik and
Tjestheim (1996) and Hong (1998). We generate 1000 realizations of the N(0, 1) random
sample {X,}/_,. For each realization of {X,}._, the bootstrap p-value of a test statistic is
evaluated using a Gaussian kernel density estimator that is based on 100 bootstrap samples.
Except for Tgkg with n = 40, all the tests have reasonable bootstrap sizes. In particular, the
bootstrap sizes of Tgri(,), Tstap)» Ty and Ty, are much better than their sizes using
asymptotic critical values and are close to the nominal levels. The bootstrap size of Tgkg is
too large when n = 40 but becomes reasonable when n = 100. Interestingly, the bootstrap size
of Tgewm 1s not better than its size using asymptotic critical values in most cases.

5.2 Power
To investigate power, we consider the following alternatives: AR(1),

X, = 03X, +e;

ARFIMA(0, d, 0),
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(1-B)"X, =¢,
BXr = Xr—l;

bilinear,

X, = ¢,(02+0.5X,_,);

non-linear moving average,

X, =€¢.1(0.8+¢);

TAR(1),

X _ _O-SXI71 +€l‘ if XI*] < 1,

r O.4Xr71 + €; lf X[71 > 1;
EXP(1),
X, =0.5X,_, exp(—0.5X> )+ ¢,
GARCH(I, 1),
XI = erh:/z)
h,=1+0.8h_, +0.19X7 ;

LOGMAP,

Xr = 4Xt—1(1 - Xr—l)a
X, ~ U[0, 1].

Here {¢,} is IID N(0, 1), AR(1) and ARFIMA are first-order linear autoregressive and frac-
tionally integrated processes, and the other alternatives are bilinear, non-linear moving
average, threshold autoregressive, exponential autoregressive, generalized ARCH processes
and an iterative logistic map. The logistic map behaves like a white noise process but is
deterministic, exhibiting sensitive dependence on the initial value (e.g. Hall and Wolff (1995)).
These are representative of commonly used time series models in practice.

Fig. 2 reports the size-corrected power at the 5% level for n = 100, based on 1000 iterations
for each alternative. We observe the following.

(a)

(b)
©

Tgem and Tgis have less power than Ty and Tk against the AR(1) and ARFIMA
models but Tgey dominates Ty and Txg against the bilinear, non-lincar moving
average, TAR(1) and EXP(1) models. For the LOGMAP model, T and Tgg have no
power (as is expected); T, has decreasing power from 1 to 0 as p increases, and all the
other tests have unit power for all p.

Tgem dominates Tig, and Ty dominates Tkg, for all the alternatives except LOG-
MAP.

Except for the ARFIMA, GARCH and LOGMAP models, the powers of Tsry(,), Ts12(1)»
Ty and Ty, achieve their own maxima when a correct lag order is used and then
decline as p increases, with the power of Ty, the least sensitive to p. Often, the power of
TGem is lower than the maximal powers of Tsry(,), Tsta(p)» Ty and Ty, but by a small
margin. In some cases (e.g. the bilinear, non-linear moving average and TAR(1) models),
the power of Ty is the same as or even better than the maximal powers of Tsty(,), Tsto(p)»
Ty and Ty, with a correct lag order.



570 Y. Hong

0.9 0s

0.8 E

0.6
0.5
0.4
c.4
1 4 7 10 1 4 7 10
P p
(a) (b)
1.0 1.0

P 3
(c) (d)

Fig. 2. Size-corrected power at the 5% level (GCM, GKS, CM, KS, D(p), M(p), ST1(p) and ST2(p) denote the test
statistics Toem, Taks: Tems Tkss Ty TMipy Tsti(p) @nd Tsrop) respectively): (a) AR(1) model; (b) ARFIMA(O, d, 0)
model; (c) bilinear autoregressive model; (d) non-linear moving average model; (e) threshold AR(1) model; (f)
exponential AR(1) model; (g) GARCH(1, 1) model; (h) logistic map
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Fig. 3. Asymptotic local power of Tgcy and Ty at the 5% level (GCM and CM denote the test statistics Tgey
and Tgy): (a) local AR(1) model (5.1); (b) local ARCH(1) model (5.2)

(d) For the ARFIMA model where it is difficult to choose a proper lag order, the powers
of Tsry(p and Ty, achieve their maxima at p = 1 and then decline as p increases. The
powers of Tp,, and Ty, are unimodal, reaching their maxima at some p > 1.

(e) All the tests have low power against the GARCH model, with Tk the least power-
ful. The powers of Tty Tsras and Ty, are slightly increasing with p, whereas the
power of T, is a unimodal function of p.

(f) Tp,) often has less power than the pairwise dependence tests Tsry(,), Tstay) and Ty,
for all the alternatives except ARFIMA. Its power also declines faster as p increases.
For the ARFIMA model, whose autocorrelation decays to 0 very slowly, however,
T has better power than Ty, Tsra, and Ty, over a wide range of p.

To examine possible power loss of bootstrapping, we study the bootstrap power using 200
realizations of {X,}._,. The results, not reported here, show that the bootstrap powers are
very close to the size-corrected powers. We also consider the exponential distribution for e,.
The power patterns are largely similar to those under N(0, 1) innovations, except that Tgep
and Tgkg become more powerful than Ty and Tyg against the AR(1) model, and Ty,
Tsty) and Ty, have gained some power and dominate the other tests in detecting the
GARCH process.

The facts that EDF tests have good power against linear processes but poor power against
ARCH processes in finite samples have also been documented in Skaug and Tjeostheim
(1993a) and Hong (1998). To explain these stylized facts, we consider two local alternatives:
AR(1),
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& (XIF ) = d(X) +n 26X, X,y + (X, X)) (5.1)

and ARCH(1),
(X NF_1) = (X + 07 28X — DXy — D) + (X Xio))s (5.2)

where ¢(-) is the N(0, 1) density. Note that /ncorr(X,, X,_;) — 6 for equation (5.1) and
Jn corr(X?, X2_,) — 6 for equation (5.2). The non-centrality process is

p(y) = 6 A~ ()} p{d ' ()}

for equation (5.1) and

p(y) =6 @7 (u) p{@ 7 (W)} 7' (v) PP (v)}

for equation (5.2), where ®(-) is the N(0, 1) distribution function and ®~'(:) its inverse
function. Fig. 3 reports the asymptotic power of Ty and Ty at the 5% level under models
(5.1) and (5.2), as a function of 6. The power of Tcyv is rather close to that of Ty under
model (5.1). Under model (5.2), however, Ty has low power over a wide range of § —its
power increases with 8, but very slowly. Thus, it is not surprising to have observed that Ty
(and other EDF tests) has good power against linear processes but poor power against
ARCH processes in finite samples. Intuitively, Tgcop has low power against ARCH processes
because the distribution function, being the integral of the density function, smooths out
changes in scale to a certain extent (the ARCH(1) process changes the scale of the conditional
distribution of X, given F,_;). Because the density function is more sensitive to the change in
scale, smoothed density-based tests are expected to have better power against ARCH
processes. This is indeed the case for the smoothed tests of Skaug and Tjestheim (1993b,
1996) and Hjellvik and Tjestheim (1996).

Acknowledgements

I would like to thank two referees, the Associate Editor and the Joint Editor for very helpful
comments and suggestions.

References

Anderson, T. W. (1993) Goodness of fit tests for spectral distributions. Ann. Statist., 21, 830-847.

Blum, J., Kiefer, J. and Rosenblatt, M. (1961) Distribution free tests of independence based on the sample
distribution function. Ann. Math. Statist., 32, 485-498.

Brillinger, D. R. and Rosenblatt, M. (1967a) Asymptotic theory of estimates of the kth order spectra. In Spectral
Analysis of Time Series (ed. B. Harris), pp. 153—188. New York: Wiley.

(1967b) Computation and interpretation of the kth order spectra. In Spectral Analysis of Time Series (ed. B.
Harris), pp. 189-232. New York: Wiley.

Brock, W., Dechert, D., Scheinkman, J. and LeBaron, B. (1996) A test for independence based on the correlation
dimension. Econometr. Rev., 15, 197-235.

Carlstein, E. (1988) Degenerate U-statistics based on non-Independent observations. Calcutta Statist. Ass. Bull., 37,
55-65.

Chan, N. H. and Tran, L. T. (1992) Nonparametric tests for serial dependence. J. Time Ser. Anal., 13, 102-113.

Deheuvels, P. (1981) An asymptotic decomposition for multivariate distribution-free tests of independence. J. Multiv.
Anal., 11, 102-113.

Delgado, M. A. (1996) Testing serial independence using the sample distribution function. J. Time Ser. Anal., 17,
271-285.

Hall, P. and Wolff, R. C. L. (1995) Properties of invariant distributions and Lyapunov exponents for chaotic logistic
maps. J. R. Statist. Soc. B, 57, 439-452.




574 Y. Hong

Hjellvik, V. and Tjestheim, D. (1996) Nonparametric statistics for testing of linearity and serial independence. J.
Nonparam. Statist., 6, 223-251.

Hoeftding, W. (1948) A nonparametric test of independence. Ann. Math. Statist., 19, 546-557.

Hong, Y. (1998) Testing for pairwise serial independence via the empirical distribution function. J. R. Statist. Soc. B,
60, 429-453.

(1999) Testing for serial independence via the empirical characteristic function. Department of Economics
and Department of Statistical Science, Cornell University, Ithaca.

Mandelbrot, B. (1967) The variation of some other speculative prices. J. Bus., 40, 393—413.

Pinkse, J. (1998) A consistent nonparametric test for serial independence. J. Econometr., 84, 205-231.

Pollard, D. (1990) Empirical Processes: Theory and Applications. Hayward: Institute of Mathematical Statistics.

Robinson, P. M. (1991) Consistent nonparametric entropy-based testing. Rev. Econ. Stud., 58, 437-453.

Scargle, J. (1981) Studies in astronomical time series analysis: I, Modeling random processes in the time domain.
Astrophys. J. Suppl. Ser., 45, 1-75.

Skaug, H. J. and Tjestheim, D. (1993a) A nonparametric test of serial independence based on the empirical
distribution function. Biometrika, 80, 591-602.

(1993b) Nonparametric tests of serial independence. In Developments in Time Series Analysis: the Priestley

Birthday Volume (ed. T. Subba Rao), pp. 207-229. London: Chapman and Hall.

(1996) Measures of distance between densities with application to testing for serial independence. In Time
Series Analysis in Memory of E. J. Hannan (eds P. Robinson and M. Rosenblatt), pp. 363-377. New York:
Springer.

Subba Rao, T. and Gabr, M. (1984) An introduction to bispectral analysis and bilinear time series models. Lect.
Notes Statist., 24.

Tjestheim, D. (1996) Measures of dependence and tests of independence. Statistics, 28, 249-284.

Wolff, R. C. L. (1994) Independence in time series: another look at the BDS test. Phil. Trans. R. Soc. Lond. A, 348,
383-395.




